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The question of reducing the problem of stability of motion with respect toa part
of variables for linear systems with constant coefficients to a problem of stab-
ility of motion with respect to all variables for an auxiliary linear system
which may be of dimension lower than that of the initial system , is considered.

1. Letus be given the following system of linear differential equations of per-
turbed motion with constant coefficients:

n
dz,
T;ZZAU'Z'J' (i=1....n) (Lv
=1
We shall consider the problem of stability of an unperturbed motion z; = ()
(=1, ..., n) relativeto z;, ..., 2, (m >0, n =m + p, p > 0).

We denote these variables by y; = z; (i = 1, .. ., m), and the remaining variables
by z; = xms; G = 1, . . ., P)1, 2]. Theequations of perturbed motion (1. 1) now
become

dy i P

d.tl = Zaikyk_{"zbilzl (=1, ..., m) (1,2)
k==1 (=1

d m p

dt] = Zci’fyk + Zdﬂzz U=1,...,p)
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where  a;;, b;, cj and dj are constants.
Let us transform the system (1., 2) to a more suitable form by introducing new variables

S
Hi:Lbizzz (=1, ....,m) (1.3)
I=1
and assuming that the first /m; variables (m; < m),pl, .« sy Wm, are linearly in-

dependent, Having introduced the new variables in this manner we find, that two cases
are now possible:
In the first case the system (1.2) is reduced to the form

m my
ay.
—df'z Zaikyk—i—zduw (i=1,....,m) (1.4)
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= Zajk Yr + 20‘1'1 B G=1,....my)
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where only the linearly independent variables of (1,3 ) are chosen as W; and the behavior
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of the variables J; with respect to which the stability of the unperturbed motion is
being studied, is completely determined by the system (1.4). In what follows, we shall
call such a system a p -form system relative to the initial system (1,2).

In the second case the system (1.2) is not reduced to (1, 4) and hence has the form

dyi m mg
T=Zaikyk+zaul~lz (i=1...,m) (1.5)
=1

k=1

dP'j m my " ; »
TR Zaik*yk + Zajl*l"t + M§ ,owt = Zd:is*zs (=1, ...,m)
k=1 =1

8=1
dz, T d
T Zcrkyk + Zdrzzz (r=1,...,p)
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k=1

We introduce once again the new variables ! and assume that the first m,
variables (my < my) Y, . . ., pm,) are linearly independent. Then the initial
system (1.2) can be reduced to the form(1.4) or (1.5).

It can be shown that by repeating the above arguments we can always reduce sys -
tem (1,2) to the p -form, The order of the system obtained will not exceed the order
of the initial system (1.2), and the eigenvalues of the  -form system will belong to
the set of eigenvalues of the system (1. 2).

Indeed , the passage to the [ -form system is equivalent to replacing the variables

z= (1, -+ Yms %1, + - -, Zp) where z is an n-dimensional vector,by the
new variables % = (Y1, + + «» Yms W1y « - =y MKny O, .., (m+p=n=

m 4 h 4 r), withthe initialsystem (1,2) assuming such a form that the first m + /&
equations do not contain @; (i = 1, . . ., 7). In one particular case we can have

h = p, l.e. the order of the p -form system obtained can be equal to that of the
initial system. Since we choose only the linearly independent variables from (1.3) and
other similar expressions as W; , we can always perform such a passage to new varia-
bles. If we write the system (1, 1) in the form dz/dt = Px where P is a constant
mairix , and consider the transformation u© = Lz to new variables ( L s a constant
nondegenerate matrix ), the transformed system will have the form  du/dt = Qu,
Q = LPL™1. The matrices P and ( are similar, therefore they have the same
characteristic roots [3] i,e. the eigenvalues of the p -form system belong to the set
of the eigenvalues of the system (1.2).

Transformation of the initial system to the p -form system enables us to consider,

instead of the problem of stability of motion with respect to the variables y; (i = 1,

..., m) for(1.2),the problem of stability with respect to all the variables for the
p -form system. Obviously, the passage to the p -form system is meaningful only
when the p -form system is of lower dimension than the initial system. Let us find the
conditions under which the above statement is true. We write, for simplicity , the sys-
tem (1, 2) as

dy/dt = Ay + Bz, dz/dt = Cy + Dz (1.6)

where ¥ and 2 are vectors of dimension m and p respectively, and A, B, C, D
are constant matrices.
Assume that the initial system was reduced to the p -form after introducing new
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variables B times. Then the new variables i, . . ., p®, . . . will represent the
linearly independent columns of the matrix Kg = (B’, D'B’, ..., D'#-'B’)
where B’ and D’ are transposes of B and D.

Lemma 1, Let any column of the matrix D’*B’ be a linear combination of

the columns of the matrix K,. Then for any i (i >> s) the arbitrary column of the
matrix J''B’ is also a linear combination of the column of K,.

Proof, Let &, ..., b, be the columns of the matrix B’, i.e. B’ = (4,
...y bm). Then D'B' = (D’'by, ..., D'bm), ..., DB = (D'Iby, ..., D'by).
Let , m m m

D*b; = 3 MPb, + N ADDD, ...+ N AEID W, (=1,...,m) (L7)

k=1 k=1 k=1
where }yjk(o), Ajk(l), e ey A,jk(sﬂl) are constants, Then

D", = D' (D"*b}) =k§1 MY Db, + k§1 MRD®, + ...+ kgl MgV Ds, N

Taking into account the fact that the equality (1,7) holds for the last term of
(1.8), we find that any column of the matrix D"**1B’ is a linear combination of the
columns of matrix K,.

Lemma 2, The sufficient and necessary condition for the j -form system for
(1.2) to be of dimension N is, that the rank of the matrix Kp is N — m.

Proof, Necessity, Let the dimension of the p-form system be equalto NV,
Using the method of reductio ad absurdum, we assume that the rank of Kp = r=-
N—m.Suppose that » > N — m. Then a number i (i < p — 1) can be found such
that the matrix Kisy contains N — m linearly independent columns and any col-
umn of the matrix D"*1B’ will ,according to Lemma 1,be a linear combination of
the columns of the matrix K., since the dimension of the p -form system will be
equal to NV. But this is impossible since in this case the matrix Kp will contain only

N — m linearly independent columns which contradicts the previous assumnption,
Therefore r < N — m. If r< N — m, then the dimension of the p -form will not
reach N, and thiscontradicts the condition of the lemma , therefore r = N — m.

Sufficiency, Letrank Kp = N — m. According to [4] the columns of the
matrix Ky_n contain N — m linearly independent columns of the matrix Kp .
Repeating the arguments expounded in the proof of necessity , we can now show that the
dimension of the p -form system is equalto V.

Corollary, The necessary and sufficient condition for the dimension of the
p -form system for (1.2) is, that rank K, << p.

2. Letus consider the stability of motion with respect to a part of the variables
for the case of differential equations of perturbed motion with constant coefficients.
Examples of the systems asymptotically stable with respect to a part of variables and
unstable with respect to the other part of them were given ine.g. [5].

We shall base our criterion of asymptotic stability of the system (1.2) with respect
to a part of the variables,on the reduction to the p -form. The behavior of the vari-
ables y;, ..., Ym. with respect to which the stability of thesystemisinvestigated are
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completely determined by the p -formsystem for(1. 2), hence the following theorem holds.

T heorem, Thenecessary and sufficient condition for the system (1, 2) tobe asymp-
totically stable with respect tothe variables ¥, . . ., ¥, is,thatall eigenvalues of the
B -form system have negative real parts .

Corollary, Letthesystem (1.2) have m eigenvalueswith negative real parts
(the remaining eigenvalues with nonnegative real parts ), The necessary and sufficient con-
dition for the asymptotic stability of the system (1, 2) with respect to variables y,, . . .,
Ym is,that the system has the form

dy; _ ™ .

T—Za{kyk, i=1,....,m (2.1)
k=1

dz.; ", P

dt’ = Zcikyk_*-zdﬂzl’ 7=1v e Py PFm=n
k=1 1=1

and allroots of the equation | @y, — ;A | = 0  have negative real parts.
The sufficiency isobvious, Toprove the necessity we assume the opposite, i, e. that
the system (1,2 ) isnot of the form (2, 1).Then the dimension of the . -form system for (1. 2)
isgreaterthan m, The eigenvaluesofthe p -formsystembelong to the set of the eigen-
values of the system (1. 2 ) , therefore by virtue of Theorem 1 we arrive at a contradiction
with the asymptotic stability relative to ¥y, . . ., Um.
The above corollary has been obtained earlier (*) by a different method .

Example, Letus consider the problem of asymptotic stability of the system
T’ = 2y + Ty = 275, Ty = b2y 2y, 23" = 27 -y — 2 (2,2)
with respect to  z;. To do this we reduce the system (2,2) to the p -form
S ——pw k=] ! — (2.3)
' =—z -+, w K, “_2 2“

The eigenvalues of the system (2, 3) have negative real parts, consequently the un-
perturbed motion (2, 2) is asymptotically stable with respect to ;.
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